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This article studies the existence of T-periodic solutions for systems of ’ :

nonlinear second order ordinary differential equatiij;jf the type
%+ V'(x) = £(t). BHere, x : R+R', vec®,p-ana £: R+&" isa
' 'y 2 %e

given T-periodic forcing term (T > 0 is given)}$>nssumin:u V to be
superquadratic, it is shown that this system possesses infinitely many T-
periodic solutions. The proof of this result rests on showing that certain
homotopy groups of level sets of the functional associated wiiytfyg system are

not trivial. Some more general results concerning systems ofrehe type .
R + Vi (t,x) = 0_are also presented here. ' f
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SIGNIFICANCE AND EXPLANATION

Systems of the type % + V'(x) = 0 (where x = x(t) € & ana
ve c‘ (lu.n)) describe the motion of a mechanical system consisting of a
finite number of points XyoseosXoy with a potential given by the function
V(x,,...,xu). In the presence of external forces, the system to be studied
is:

(*) ®+Vi(x) = £(t) .
Assuming that the forcing term £(t) is T-periodic in time, one would like to
know whether (*) has a T-periodic response. Under the assumption that V has
superquadratic growth as |x| + + ®, it is shown in this paper that the
answer is affirmative; in fact, (*) has infinitely many T-periodic vibrations

induced by the forcing term f,
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EXISTENCE OF FORCED OSCILLATIONS FOR
* SOME NONTINEAR DIFFERENTIAL EQUATIONS

Abbas Bahrl‘ and Henri Bereltycki"

1. INTRODUCTION AND MAIN RESULTS

(TEeR, T>0

This paper is concerned with the existence of T-periodic solutions

given) for the following second order system of nonlinear ordinary differential equations:

R+ viix) = £(¢t) .

(1.1)

2
Here, k = %:-, 3 d—:, x: R+, vec'®,R), V'(x) is the gradient of V and
at
£ : R* IP is some given T-periodic "forcing" term. The main purpose of this paper is to %

show that if V(x) is superquadratic as |{x| ++ e, then (1.1) possesses infinitely many

T-periodic solutions (“"nonlinear forced oscillations”).

More precisely, we assume that V satisfies the following condition:

0 < V(x) € B V'(x)*x for all x € IF, Ix| >R,

with 0 < 8 < % s, for some R > 0 .

(Here, V'(x)°x denotes the scalar product in ). Prom (V) via an integration it is
easily derived that V is superquadratic at infinity; that is, V satisfies:
N

(1.2) p:ilxlpﬂ-b<V(x), vxer ,

with p+ 1= % > 2 and a,b > 0 being constants.

Let us now state our main result.

-
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Theorem 1. Suppose that V & cz(l“,l) satisfies condition (V). Then, for any given
g e Lioc(l.l“) wvhich is T~periodic, the system (1.1) admits infinitely many T-periodic

oolutlon.( " o

The proof of this result will take up sections 2 to 6. 1In Section 7, the same method
is applied to obtain the existence of periodic solutions for more general non autonomous
systems of the type
(1.3) R+ Ve =0 .

There is a vast literature devoted to the subject of nonlinear oscillations in systems
like (1.1) or (1.3). However, in the case of a superquadratic V, for a system (1.1),
even the existence of at least one periodic solution for any given periodic f was an open
problem. Let us recall some previous works in this domain,

Firstly, in the case of a single scalar equation (N = 1);

(1.4) R+ glt,x) =0 (x(t) em ,

quite general results on the existence of periodic solutions have been obtained by Hartman
{14) and Jacobowitz [15] (by using the Poincar§-Birkhoff Theorem). PFor earlier works in
this case N = 1, the reader is also referred to Cesari (10}, Ehrmann (11], Micheletti
{17), Pucik and Lovicar [13], Nehari (18] and Wolkowiski [26]. (See also the book by S.
Puéik (12, Chapter 36] which mentions the open problem of extending the results from scalar
equations to systems).

For systems, vhen N > 2, existence of free oscillations in the autonomous systea

(1.5) R+ Vvi(x)=0
(i.¢c £ =20 4in (1.1)) have been established for V & C‘(l“.l) satisfying condition (V)
by Benci (7] and Rabinowitz [20, 23]). The methods they use rely on the autonomous

character of (1.5) (or equivalently, on the s'-invarhnco of the associated functional -

(”A weaker version of this result was announced in our Note (5] where an additional
assumption was imposed on V; in particular V was restricted to have at most polynomial
growth at infinicy.
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see below) and 4o not apply readily for a forced system like (1.1). As a first step in the

proof of Theorem 1, we will derive the result concerning free oscillations by a new and

somevhat simpler ptoot("'
The present paper is, in a sense, a continuation of (6], There, we studied the

existence of forced oscillations for Hamiltonian systems of the type

%=~ %% (x,p) + £(2)
(1.6)

. 3

P ™3 (x,p) + tz(t) .

In (1.6), == (x,p) 1 R+ B, H(z) € 2™, R); (£,,2,) + B+ B

is given, of class
c' ana T-periodic. In [6), H was assumed to satisfy the same condition as (V) (with
respect to the variable = = (x,p)). H was furthermore required to verify:

al:l’“ -b<ua a2 4 veen™,
(1.7) with

1<pCq<2p+1 and a,b,a’,b*' >0 .
Under these conditions, we derived in (6] the existence of infinitely many T-periodic
solutions of (1.6).

¥ow (1.1) is but a particular case of a Hamiltonian system like (1.6), of special

importance in machanics. 1Indeed, (1.1) corresponds to a separable Hamiltonian
(1.8) ax,p) = 3 Ipl? + v
and £ = i‘ - !2. Theorem 1, however, is not contained in the results of [6]. Firstly,
from (1.7) one sees that the Hamiltonian H corresponding to {1.1) is not superquadratic
in both variables x and p2), purthermore, it should be emphasized that on the contrary
of the results of {6] about (1.6), no additional assumption to (V) (e.g. like (1.7)) is

being imposed here on V.

“’v.ry recently, and independently, Rabinowits [24]) has proved a weaker version of
Theores 1 under an additional growth restriction om V. The approach used in [24) is
different from albeit not unrelated to ours.

“’muﬂw‘ regults for the system (1.6) that would contain both the case of a
superquadratic H and (1.8) are still by and large open.




The structure of the proof of Theorem 1 parallels the ideas we developed in [6). But .
the framework and, chiefly, some crucial estimates and the way these are established are
quite different for the two problems. Therefore, we have separated the study of (1.1) from
the results concerning (1.6). We shall nevertheless use here a few results from (6)
without repeating the proofs. The methods of the present paper are also to be compared

with the ones we used in [3, 4] to study some superlinear elliptic partial differential
(1)

T A WIS o

equations

In this paper, as in (6], we will use the recent work of A. Bahri [1, 2] in Morse

Cr———

theory which concerns the relationship between critical points of a functional and homotopy ;
groups of its level sets. In Section 2 we state in an abstract setting and recall the

proof of the precise result that will be used in the sequel.

To prove Theorem 1, we first conmstruct in Saction 3 a uquoxico of critical values

(c.) for the autonomous system (1.5). The level sets of the functional associated

°x
with (1.5) corresponding to the numbers c, are then shown to have some topological

property which, in some sense, is stable under perturbations. We also require a sharp
estimate from below on the growth of the G, a8 k * 4w, This is obtained by carefully
analyszing in Section 4 a certain autonomous equation that serves for comparison purposes.
We conclude in Section 6 by using a perturbation argument on the autonomous functional
which allows us to find periodic solutions of (1.1).

In the last section, we study more general perturbations from an autonomous system of
the type (1.3). There, we derive some results about the existence of infinitely many

periodic solutions of (1.3) which extend Theorem 1.

Ol e g R A AT AU ¢ P YN e

This paper is thus organized as follows:

-

+» Introduction and main results.
2. A theorem on the homotopy groups of level sets of a functional.

3. Critical values and periodic solutions in the autonomous case. :

(1)actually, the methods of the present paper could also be used to slightly improve the
results of (3, 4].

-4~




A detailed study of some autonomous equation.
5. An estimate from below on the growth of the critical values.
6. Existence of forced oscillations.
7. More general forced systems.
Acknowledgment. The authors are much thankful to Haim Brezis, Ivar Ekeland and Paul

Rabinowitz for many valuable discussions on this problem and on related topics.

2. A THEOREM ON THE HOMOTOPY GROUPS OF LEVEL SETS OF A FUNCTIONAL

In the course of the proof of Theorem | as well as in the last section, we will use a
result concerning the relationship between certain homotopy groups of level sets of a
functional and its critical points. The main idea is to adapt a clasgsical theorem from
Morse theory to situations which may be "degenerate”. This adaptation relies on an
approximation procedure of Marino and Prodi [16]. 1In this section we state in an abstract
setting and recall the proof of the precise theorem that will be required thereafter. This
result is due to A Bahri (1, 2] and we refer the reader to [1,2] for more general
properties in this direction.

We start by recalling the following fact from Morse theory. Let M be a smooth
Hilbert manifold. Let f € cz(n,n) satisfy the Palais-Smale condition (see below); we
denote M _ = {x eM, £(x) > a}. lLet b < a be two given reals which are regular values

of f. Assume that the set z;(t) = {xeM b < f(x) <a, £'(x) =0} is finite and that

yxe z;(f), x is a nondegenerate critical point of f (i.e. the Hessian form £"(x)

is definite). Recall that the coindex of x is the maximum dimension of a subspace of

T, M on which £%(x) is positive definite. Then, one has the following result (Theorem
7.3 in J. T. Schwartz [25]).

Proposition 2.1. In addition to the above hypotheses, assume that for any x € z:(f), the

coindex of x is larger than n. Then 'n(Hb’Ha) = 0,

ey Tt
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Here ln(llb,!.) denotes the relative homotopy group of the pair L

new =u\{0). Prom nowon, let M = H be a finite dimensional Hilbert space. Let

fe cz(ll,l) and assume that f satisfies the following Palais-Smale condition.

ror any sequence (xj) C H such that f(xj)
(P.8), is bounded and f'(xj) + 0, there exists

a convergant subgequence from (x j).

We denote Z'(f) = {x @ H) £'(x) = 0, £(x) < a} and (£l, = {xeH £(x) >a). rrom the
previous proposition we derive:

Proposition 2.2, Let f e cz(n,l) verify condition (P.8)y. Suppose that for some
regular value of £, a € R, zZ%(f) is finite and that for any x € z'(f). x 1is non-
degenerate and has coindex larger than n. (That is, £"(x) has at least n + 1 positive
eigenvalues, counting multiplicities, and f£"(x) does not have 0 as an eigenvalue).

Then, I‘([!].,p)-o v2<n-1, tem,Vvpe [t‘]‘.

Here, l‘( [£] .,p) denotes the (absolute) homotopy group of order 1 of [£], with
base point p. To prove this proposition, we require the following well known lesma (“"non-
critical neck principle®").

Lemma 2.1. Let f € C'(H,R) verify condition (P.§),. Let b € R be such that f has no

critical values in (-e,b). Then, [ﬂb is a deformation retract of E.

Proof of Lemma 2.1. PFirstly, by (P.S)y, there exists by > b such that £ has no
critical values in (--,b1]. Let p: H+* R be a locally Lipschitz f-nction such that

0<p<1, p=1 on the set {x e H; f(x) <b} and p 20 on [f]b. (Such a function

1
is easily constructed explicitly; see e.g. Rabinowitz [22]). Let v denote a "pseudo-

b
gradient vector field" for f on the set [f) V. {x e n; £(x) < b, }. That is,
b,

v [£]) 1. H is a locally Lipschitz mapping satisfying:

<E'(x), v(x)> > Ig*(x) 1P

v(x)l € 20 (x) !

Ao -
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b
for all x in (f) ' vhere < , > and 1 1 denote the scalar product and nors in H.

The existence of such a vector field under the assumptions of Lemma 2.1 is classical (see

[ 11 1} [22)).

Consider the initial problem

(2.1) 40 . oo 20 n0,x) = x
at 2
v(n) !
{n= n(t,x)). Using condition (P.§5}, it is easily verified that (2.1) has a unique
solution n(t,x) defined for all t € R and x € H, and that for each t € R,
% + n{t,x) is a homeomorphism: H + H. Clearly, if x € ff]b ¢ then
1

ne,x) = x ¥t &R One also has:

1 ]
(2.2) S L opm LD L1 gy 5,
v(n)l

Hence, the function t + f(n{t,x)) is nondecreasing. If f£(n(t,x)) <b for some t » 0O,

then f(n(s,x)) < b whence p(n(s,x)) = 1 for all s e [0,t]. 1In this case, therefare,

finte,x)) - &x) 23

penote c' = max(c,0) for ce R and let
rlt,x) = nlat(b - 0 ,x1, te(0,1), xem.
Then, r : [0,1] xH + H is continuous, r(t,x) = n(0,x) = x for all x e l!]b,
r(0,x) » x, Vx eH, and, lastly, r(1,x) e [f]b, VxeH. Thus, [f]), is a
deformation retract of H,
Proof of Proposition 2.2. Let bEeR, b <a be such that f haa no critical values in ]
{-=,b). Since (f], is a retract of H, one has
(2.3) 12((ﬂb.p) =0, view, vpe [f)b v
By Proposition 2.1, one knows that
(2.4) tl([tlb,[ﬂ.) =0, view, 2<n.



For pe [t]‘, one has the exact sequence:

(2.5) R 1T T I R RTC I NI IS IR RIT N T/ IR IR
Using (2.3) and (2.4), the exact sequence (2.") yields

(2.6) 0 » ll([f]‘,P) +0, veiew, 2<n-1.

The proof of Proposition 2.2 is thereby complete.

The setting of Proposition 2.2 is "nondegenerate” in the sense of Morse theory. That
is, 2z%(f) is finite and any x € z‘(f) is assumed to be nondegenerate. The main result
of this section is the following theorem (A. Bahri (1, 2}) which extends Proposition 2.2 to
situations which may be degenerate in the above sense.

Theorem 2. Let H be a finite dimensional Hilbert space. Let f € Cz(H,l) be a
functional satisfying condition (P.S)1. Assume that a is not a critical value of f and
that z‘(t) = {x e H £f(x) <a, £'(x) = 0} is compact. Suppose furthermore that for any
x € z‘(f), there exists a subspace By CH such that dim H, > n and f"(x) is a
positive definite bilinear form on H, (i.e. f"(x) has at least n + 1 positive
eigenvalues). Then,

Iz([f]a,p) =0 viemwm, 2<n-1, Vvpe [f]. .

The proof of Theorem 2 rests on the following approximation result of Marino and Prodi
(16] (see also Proposition 6.2 in [6]).

Proposition 2.3. Let @ be a c? open subset of some Hilbert space ¥ and let

¢e Cz(n,n). Assume that ¢' is a Fredholm operator (hence of null index) on the
critical set 2z(¢) = {x € Q; ¢'(x) = 0}, Lastly, suppose that ¢ verifies the condition
(p.s)1 and that 2(¢) is compact. Then, for any eo > 0 and Uy > 0, there exists
ve CZ(Q,R) verifying (P.S), with the following properties.
i) $(u) = ¢(u) if distance{u,z(¢)} > LN
i) Ty(u) = ¢(u)l, 1P (u) = ¢ (Wi, I (u) - (W < e, vue
iii) The critical points of ¢ (if any) are in finite number and nondegenerate.

Remark 2.1. This result is proved in [16). The only modification with respect to the

statement in Marino-Prodi [16] concerns property ii) where we have added the requirement




W (u) = ¢"(u)l < :0. However, an inspection of the proof of {16] readily shows that this
condition can be fulfilled as well by the very same construction. L]
Proof of Theorem 2. For x€H, r,a€R, r,a>0 and A H we denote

B(x,r) = {y € H; ly - x0 < r}, and Na‘” = {x @ H; distance{x,A} < a}. Firstly, let us
remark that since H is finite dimensional, there exists £> 0 such that
(2.7) <E"(x)h,p> > ¢ e vhen .

Since f is of class c2, there exists a ball B(x,rx) centered at x of radius

rx > 0 such that .

(2.8) R e vhen, Vyeslxr) .

Let x1,...,xp e z’(f) be such that B(x,,rx ),...,B(xp,rx ) form a covering of Z2(f).

1 P

Let rt1 > 0 be such that

a P
Nz c v B(xj,tx ) .
1 =1 b

Let us now apply Proposition 2.3 with ¥=H, ¢=f, and Q= {x e H; f(x) < a}. Since

2

a is not a critical value of £ and Z2,(f) is compact, 1 is a C“~open subset of H |

and there exists 0, such that distance{x, z(f)} < n, implies f£(x) < a.

2
Let n, = ﬂn{n,,nz} > 0. Lastly, we choose € >0 such that
1
(2.9) to < 1 nin(ex reves € }
1 P
and
(2.10) % < a- max £(x)
xeN (2 (f))
"

Then, by Proposition 2.3, there exists ¢y e Cz(ﬁ.l) verifying 1)-iii). Let g(x) = $x)
if xe Q and g(x) = £(x) if £(x) > a. Noticing that there is some € > 0 such that
¥x) = £(x) for any x € § with f(x) » a - €, it is readily seen that g € cz(H, R).
Furthermore, by i), ii) and (2.10) one has (g}, = [(f],.
Since z‘(q) c Nn (z%(£)), for any y e 2z%(g) there exists je {1,...,p} such that
ye B(x,rx), with xoa xj. Hence, using (2.8) and the fact that
e (y) - gtiy)t <1 € -

one obtains

“9w




-

€
<g(yIh,p > =% mi’? vhesn <

Therefore, as dim H > n, the coindex of y is larger than n, for all ye z.(q). By
Proposition 2.2 one then has ll('(t;\}‘,[:) =0, vtew, Lt<n-1, Vpe [gl..

Since [9]. - [!]., the proof of Theorem 2 is thereby complete. s

Remark 2.2. The compactness hypothesis on 2Z*(f) in Theorem 2 is certainly verified if

£ satisfies the following stronger Palais-Smale condition:

For any sequence (xj) C H such that f(xj) <cC
(P.S) (for some C € R) and f'(xj) + 0, there exists
a convergent subsequence from (x_ ).

3

The functionals that we will consider in the sequel do satisfy this stronger version. @

3., CRITICAL VALUES AND PERIODIC SOLUTIONS IN THE AUTONOMOUS CASE

In this section we construct critical values for the autonomous problem (1.5) and
study some of their properties. In particular, this construction will allow us to prove
the existence of free ogcillations in (1.5) for any Vv € C‘(IN,R) satisfying condition
{V). We start by setting the functional framework that we will use throughout the paper.

Without loss of generality we may assume by means of a scale change in time that
T = 28, 1In the following, as is customary, 2W%-periodic functions will be thought of as
defined on s' = w2rs. Let E= (1'(s'))Y. E is endowed with the Hilbert norm

Ixi? - [2' 1%1%a + ;2' 1x)2ae m,
0 0
In order to keep notations simple, we henceforth will write H1 (s1 ). Lr(s1) ees instead
of (ﬂ, (s'))", (I.r(s,))N etc... Recall that E < L.(Sj) with a compact injection,
For x € E, let
2%

2%
o0 =3 [ ixlifae - [ vioae
0 0

("lh recall that E is the space of 2w»periodic functions x : R + n“ such that

Ixl < =,

-10-
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O .

and

1 2% 2 2% 2%
Hx) =5 [ 1%x1%ae - [ wvixiat + [ fex at .
20 0 0

Thus; solutions of (1.1) coincide with the critical points of I in E, while the critical

points of I* in E are the 2m-periodic solutions ("free oscillations™) of the autonomous
system (1.5). We will also assume - without loss of generality - that V(0) = 0 so that
I(0) = 1%(0) = O.

We will now construct a sequence of critical values of I* in E by a minimax type
principle on a finite dimensional approximation of E together with a limiting procedure
(Galerkin method). The spirit of this construction is to be compared with the work of
Rabinowitz [19] concerning superlinear elliptic partial differential equations.

The eigenvalues of x *+ - ¥ in E are the numbers 0,1,...,-2.... (m € W. Let
E® denote the (2m + 1)N - dimensional subspace of E spanned by the eigenfunctions
corresponding to the (m + 1) first eigenvalues. That is, E® is the subspace of
truncated Pourier series defined by:

" = {x e B x(t) = +§ a eijt, a,ec”, a =3, -m< j <m}.
jomm 3 3 -3
The group s' acts naturally on functions of E by time translations. Por
ei‘ e S1 (or equivalently, Tt € R/2%Z) and x € E, we denote:
Ttx = x(s+ 1) .
Clearly, the subspaces £” are left invariant by this action (T‘!. - B‘) and the
functional 1I* is invariant:
I'(Ttx) = I%(x) VxeE, V 1€ R/2% .
Notice however that, in general, I i3 not invariant under this action.

We recall that the group S' acts on odd dimensional spheres. Let k € w* (=m\{0})

and identify R2k = Ck 8o that
k

= (C e c)‘i L= ({1:0°01Ck)l 2 |C

2k~1
s
gt 3

=1},

{1~




Then, for ou e s1 and [ € SZk-1' we write

- i i
th - e TC = (e 1c1,...,oit:k) .

A mapping h : Szk"1 + ™ is said to be s‘-equivnrnnt if

ho'rt-'r‘ah vre 2w .
Following the same construction as in (6], we define a family of mappings and one of
sats by letting, for m > k + 1, m,k € W*:

#® - h : szm—zx—1

X + E"\{0}s h is continuous and s‘-oqulvar.lant} '

A; = (A c E®™\{0}; A = h(g2¥" 2~

»
), he th} .
This family of sets allows one to construct critical values for I* on E® by a mini-max

type principle. We define

(3.1) c: = gup min I*(x) ,

AeA® YEA

for all m, keN*, m> Kk + 1.
Some properties of theses numbers are listed in the next propositions.

Proposition 3.1. Suppose V € c'(n“,m satisfies (V) and V(G) = 0. Then:
m m
1)o<ck(ckﬂ<+- Vmk €N*, m>k+ 2 .
ii) Pror all k @ w*, there exists u(k) and v(k) such that
0 < uk) <c:<v(k) CH+e  VmIk+ 1.

iii) Moreover, lim u(k) = +e,
k+4+o

Proposition 3.2. For any k € N* such that u(k) > 0, c: is a critical value >f the

restriction of I* to EP. Purthermore, the limit of any convergent subsequence of c:

as m + +® g a critical value of I*.

Before proving these propositions, let us observe that, as a corollary, one derives

from them the following result of Benci (7] and Rabinowitz [20, 23] concerning the periodic

solutions of the autonomous system (1,.5).
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Theorem 3, Suppose V & c‘(l",l) satisfies (V). Then, the autonomous system (1.5)

possesses at least one non~constant T-periodic solution for any T > 0.

Proof of Theorem 3. We actually derive here a slightly stronger version of this result.

We show that for any A > 0, there exists & non-constant periodic solution x of (1.4)

such that Ix! _ > A. 1Indeed, let

L
c = lim c: .
e

By Propositions 3.1 and 3.2, 0 <€ c <= and lim S > lim wu(k) = +=, Furthermore,
) $ad k+to

Cx is a critical value of I* (as soon as u(k) > 0.
Now lat x, be a constant function, i.e. x, € E°. Then

L -

I (xo) - -2% V(xo) < 2%b
tor it follows from (1.2) that -V(x) <>, VvV xe l". Thus, I* is bounded from above
on B° and therefore, for large Kk, €y corresponds to a non-constant periodic solution
of (1.5). let x, denote a critical point ot I' associated with Skt X, ¢ E,
I'(xk) =cys (x')'(xk) = 0. We claim that I)S‘IL_ + 4% ag k + + », Indeed, arguing by
way of contradiction let us assume that h&l « Femains bounded along a subsequence.

L
Bince from the equation one derives that

2

¥ e 2
g lxkldtg

2%
v'(xk) % dt ,
it is straightforward to see that I'(xk) would then also remain bounded. This being
impossible, the proof is thereby complete. .
We now turn to the proofs of the propositions.
Proof of Proposition 3.1, This result parallels Proposition 3.3 in {6]. The proof of i)
which is quite simple (and identical to that in [6]) is omitted here. Let us prove ii).

Consider the functional

an
(3.2) st =3 [ gk? -2 P
0

“13-




(From now on, the measure dt is understcod in all integrals over (0,2v]). Define

(3.3) z{ = sup min J(x) .
AeA,: XBA
BY (‘02)' one has
] ]
(3.4) (:k < % + 2D .
We require the following intersection lemma. 1It‘'s proof is a straightforward

adaptation from [6, Lemma 3.1] and will be omitted here. (It is a consequence from a

version of Borsuk's theorem for the s‘-acuony see [6)) and the references therein).

Lemma 3.1. Por any A € «:k' one has A N !kﬂ t ¢

Let us now show the existence of V(k) < ® such that c: € Wk), vVmadk+ 1. Since

® <t , it suffices to prove that for each k and m » Nk + 1, ¢ is bounded from
% © %k Nk

above (by V(Nk)) independently of m. From Lemma 3.1 it follows that

(3.5) min J(x) € max J(x), VA eA:k .
xeA g™
Now, for x @ lk", one has
2% 2%
J P cexen? [ x?.
0 0
Therefore,
2 2% 2%
(3.6) st LI g? o Ao Y, vxe ™!
0 0

Since the right hand side of (3.6) is obviously bounded from above independently of

x e Bkﬁ, we conclude, using (3.3) - (3.6) that

c:<v(k)<¢- Vkmew*, m>k + 1,

We now turn to the lower bound u(k) for the c:. We construct an explicit set

A e A: in the same way as in [6). Incidentally, this will also show that A: ¢ ¢ whence

that the cf are well defined. Let k= Nq=- L with q,2e W, 0 < LCWN. ¢t s
i8 i
identified to a subspace of (:N in the usual way., For B8 = (o1e ‘,...,o“e eN) eCc and
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h i ot b i .. .

R OO

jemn, (91,...,o“en+, 91,...,0“el/2u). we denote

(3) 1101 leN

B - (p‘c rees s B0 ) .
write ¢ e M o, (. (BelgyqerersGy) with G e M for q+1 <3 <N,
m
o ctcd, ana "3'2 = 1. We define a mapping h = s> 21 L g™\ (0} by
i=q
setting:
1.0% 1 (3 43t 1 = (§) -1t
(3.7) n(gte) = — § FE O3 e .
2% j=q
tet £ = 0T )b men, h: s T L p™{0) c ®\{0}. Indeed, one checks that
q 2% q
for any y € hi(s ; 2k"‘) one has | Iﬂz- 1. Furthermore, h is continuous, and h

0

verifies:
el ~ e+ v, velles', veen.

(Just observe that (e“B)(j) = c“‘( B)U)). That is, h 1is equivariant under the s'-

action. Thus, h ex: and AL # 8 cf is well defined.
Consider the mapping h(g) = 1:7_%?'__' Then, again h : g2m=2k-1 »x;\ fo)c g™\ (o)
-«
L
is continuous. Since I'rTxl - Ixl - ¥V TE R/2%E, it is clear that h is
~ mP Lo 2nm2k-1 n
equivariant. Hence h exk, and A = h(S ) e Ak. For any x € A, one has

Ixl _ = 1. To conclude, we require the following simple lemma.

-
L
g-1, 1
Lemma 3.2, For any x € (E ; one has
o c—=t— 1,
L &0 “1 /v L

Proof of Lemma 3.2. Let x € (l:q.")la x has a Fourier series expansion

N -—
’ ljec, u_j-aj

x= ajeijt
131>q
jex

One has
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.12 2,2
x4 = 2v ] 1a,1%9%,
L2 t3l%
and
(3.8) b < 1 gl

writing Iajl - (Iajlj)j-1, one derives from (3.8):

(3.9) < { [ l-jl"‘jzf/2 (1 wi?fe.
L 1313 1315
That is,
1 -2
(3.10) xt _<— &kt _ 2 {] 3 fz
Al T 1%

and the Lemma follows.

2Nm=-2k~1

We now conclude the proof of Proposition 3.1. Let A = his ). Then, by the

definition (3.1) of c: , one has
(3.11) c: > min I*(x) .
xeA

Since A C{xer™, Ixl =1} CsS_, with 8 = {x e (tq-i)l) Ixl _= 1}, one derives
q L q q "
from (3.11):

(3.12) c. > inf I*(x), Vark+ 1,

xes
q

m
k

Hence, in particular, there exists for each k some 'ﬁ: e sq such that

(3.13) c:>1'(:5‘) ~1=uk), VEmIk+1.
2%
We claim that lim u(k) = +», Indeed, since lxkl =1, [ V(x) is bounded
k++e L 0 k

independently of k. By Lemma 3.2, on the other hand, one has

2% 2

kal >wgq=-1) .

~16-
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2%
%hen k + +® one also has q * +», yhence ] liklz + +® and I'(xk) > 4o,
0

The proof of Proposition 3.1 is thereby complete. ]

Proof of Proposition 3.2. We only sketch the proof here as it is essentially classical.

To begin with, we observe that I* sgatisfies the following Palais-Smale condition:

For any sequence (xn) C B such that
(r.8) I‘(xn) <C and (I')'(xn) +0 in E',
then (xn) is relatively compact in E.

Here and thereafter, C denotes varjous positive constants. The restriction of I* to

™, 1 a’ satisfies the analogous property in E®:
I8
¥(x ) C " such that I*(x) <C and
(p.8), (1* )'(x)) +0 in (8%)', then

»
[
(x n) is relatively compact in ™.

The proofs of these propertiea relying on condition (V) are by now classical and we shall
not repeat them here. (See e.g. Rabinowitz [22) and Bahri-Berestycki (3, 6] for the

derivation of these properties in related situations).

That c; is a critical value of 1I* as soon as u(k) > 0 follows from the

n
definition of c: and the property (P.S)ll‘B for 1* a* One can indeed adapt the type of
argument given e.g. in Rabinowitz {22] to the pteson: framework. The only modification
which is required with respect to [22] concerns the "deformation lemma®. Here one needs an
appropriate "deformation® in the space E™ which, in addition to the usual properties, is
equivariant under the s'-action on EP. The proof of this fact is but an adaptation from
the argument in [22] and is left to the rondor“). A more general “equivariant deformation
lemma™ for the action of a compact Lie group is given in Benci (8] and could be used as

well here., Lastly, let us just remark that the hypothesis u(k) > 0 is imposed because a

set A in A: is required to be included in E"\{0). Thus, one has to construct the

) If I* 1is of class c2, one does not require this equivariant deformation lemma
since one can work directly with the gradient flow of I* which indeed is equivariant.

-17-
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st B

proper deformation of A which leaves 0 invariant. This is possible if one a priori

knows that c: > 0.

Let k € W* be such that u(k) > 0. Since 0 < u(k) < c;' € Wk) ¢ +®, the ssquence

(ck)-)k” possesses a convergent subsequence when m + +%, Let ny be a sequence of
integers, lj >k + 1, such that -j + +» and <:kj * <:k e Ry then,
0 < p(x) < °y € Vk) < 4@, For m= nj, since c: is a critical value of 1* a’ there
E
exists x- e x' with
N - * . ' -
(3.14) I (x-) S (1 ll') (x-) 0.

Let P® denote the orthogonal projection of E onto E®, (= m;). One then has:

1 2% . 2 2%
(3.15) 7] w1 -f wixy <c
0 0
and
(3.16) -2 = p‘v'(x_) .

Multiplying (3.16) by X, and integrating yields:

2%

2 2%
(3.17) g 1% 1 -J Vi) e

Using (V) it is straightforward to derive from (3.15) and (3.17) that
2% 2 2% 2%
I li-l ’ f Vix) ana [ V'(xm) %, are bounded independently of m = »y. Using
0 2% 0
(1.2), one derives that f lx-|P" is bounded too and so is Ixnl'. Therefore, one can
0

strike out from (x,) a further subsequence, denoted again by (xy) such that X, * X
weakly in E, X + x strongly in I.-, and P%'(xn) + V'(x) strongly in 12 whence

in E'. Using (3.16) we conclude that x, *+x strongly in E. Clearly, x is a critical

point of I* and I%*(x) = 1lim c: =cp. Thus, c, is a critical value of I*.
--j»-
This completes the proof of Proposition 3.2. L
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To conclude this section, we recall from [6] a topological property of the lavel sets

of I* associated with the numbers c:. This property is the key to the perturbative
method for proving Theorem 1 which is developed in Section 6. Throughout the remaining of

the paper we use the following notations. Por a functional ¢ : E + R, for ae€ R and

m € W', we denote (interchangeably):

(41, = (4>a] = {xer; §x) >al

Wi =t02a"~ xes™ wx) >a).

Theorem 4. Suppose that for some € > 0 and some m, k € W*, one has

0 < c:_1 + €< c: - €. Then, for any set WC E® such that
P n n P m - m
(1* dc, q+ €8 DWO1* 3¢ ~ ¢
one has

‘ L]
'21«-2):—1("'0) 0, for sons xo ew

Proof of Theorem 4. As it is quite simple, we repeat here the argument from (6,

Theorem 3]. We argue by contradiction and suppose that 'zm-zk-i (W,*) = 0. By the

definition of c:, there exists h 3 s!! =1, E™\{0} which is continuous,

s‘-oquivariant and such that
ns® N c e >R~ 9%cw

Since '2“.—2):-1(“'.) = 0, there exists a homotopy
v [0,0)x s Ly
such that
u(o,g) = hig) -
vce szm-zx 1 .
u(1,3) = Xy
Write

s L fea (500t te ™K, pen , sewam, 10t =)

Now define h 1 g 2k*1 , ;B\15} by setting:
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h(g) it p=0, IRl =1,

hig,et? = 'l'otl(o,c.ie TET) it p*0, T*O,

¥ TeX, if p=1, ¢T=0.

Then, it is easily checked that h is continuous and s‘-oquivarlant. Since I* is

P

invariant under the s‘-action. the level sets of I* are invariant sets under this

! action. Therefore, as U(t,) e w C [I* > c:_1 + €)™, one has
¢
F‘
i (3.18) R cpe s v a”
This implies in particular that 0 ¢ F(s™ 2*"'), wnus, K ed and (3.18) reads:
L)
min 1*(x) > L + €
xe;(szun-2k+1)

which contradicts the very definition of c:_1

complete. .

« The proof of Theorem 4 is thereby

4. A DETAILED STUDY OF SOME AUTONOMOUS E TION
] In order to apply the preceding theorem, it is crucial, as will be seen in Section 6,
to have a sharp estimate from below on the growth of the critical values )y as k * +=,

Such an estimate will be derived in the next section. Some preliminary results are first

required that we prove in the present section. They concern the precise description and

some qualitative properties of the solutions to some auxiliary autonomous equation.
Consider the problem:

(4.1) -% = g(v) (v(t) e R)

where g : R+ R is a given function. Throughout this section, g will be assumed tc

satisfy the following properties: !

(4.2) gs R+ R is of class c‘, is odd and g(0) = g*'(0) = 0 .

(4.3) g is increasing and convex on [0,+%®)

-20-
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t
(4.4) 0 <G(t) = g(s)as < 6g(t)t, V t #0 with 0 < 8¢ % .
0

Let & = H‘(s‘): here & consists of scalar functions (note that E = &8¥). For

m € N*, consider the subspace of truncated Fourier series:

+m
" - [xe & x= ) a.ei’t, a, ec, ay = a, m <j <m} .

j=-m 3 3
The next result provides a complete description of the set of 2w-periodic solutions of
(4.1).
Proggsitldn 4.1, Suppose g satisfies (4.2)~(4.4). There exists a sequence of nontrivial
2%-periodic solutions (“k)kel' of (4.1) such that uk(O) = uk(2t) = 0, Por each
k en, u, is characterized by the properties that u, has 2k-1 zeros in (0,2%)
(all the zeros of u, are simple) and ui(O) > 0, Furthermore, for any nontrivial

solution v of (4.1), there exist ke W* and <T1T€ R/2¥E such that v = Ttuk'

Proof of Proposition 4.1. Consider the nonlinear Sturm-Liouville problem:

[ « gtw) in (0,2W ,
(4.5) {

w(0) = w(2¥%) =0 .

It is known (see H. Berestycki (9])) that (4.5) exactly possesses a sequence of pairs of

nontrivial solutions tw,, th,...,tw sess « For all 4, vj is characterized by the

3

properties that v;(O) >0 and "j has j - 1 zeros in (0,2w), all of which are simple

{"nodes”™). Furthermore, these (*"j}jel' together with w, I 0 constitute all the
solutions of (4.5) (see [S]). A simple integration by parts show that any solution w of
(4.5) satisfies (v'(2!))2 - (w'(O))2 = 0, that is w'(2%) = g¢w'(0). Hence, w5 is a
periodic solution of (4.1) if and only if j is evens j = 2k, k € W', We denote

LR S VkeMNn Then, for any ke ¥* and 1€ R/2WZ, Tr“k is a 2wperiodic
solution of (4.1). We claim that 0 and (T u.; ke W', 1€ R/278) are the only

2w-periodic solutions of (4.1).
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Indeed, let v Dbe a non-constant 2w%-periodic solution of (4.1); then v E 0. There

exists T € [0,2%] such that v(Tt) = 0. For if not, v would not change sign in
[0,2¥]. But this is impossible since by integrating (4.1), one sees that v satisfies:
2%
f g{v) = 0
0
and g(v) has the sign of v. Now, let u = T-'rw u is a 2wperiodic solution of (4.5)

and u § 0. Hence, there exists k € W* such that u = % . As it is easily checked,
v

one has -, = ‘r‘uk. Therefore, either v = Truk or v= !‘“'uk.

The proof of Proposition 4.1 is thereby complete. .
z
Let G(z) = f g(s)ds and consider the functional associated with (4.1):
0
1 2% 2 2%
Q(V)-EI "r-f G(v), ve &,
0 0

¢ is a functional of class c2 on & and

2% 2 2% 2

<p"(vih,h> = [ h° - [ g'(vIn® .

0 0
{(Recall that & <~ L-). The critical points of ¢ on & are the 2wperiodic solutionsg of
(4.1). Thus, the critical values of the functional ¢ on & are exactly the numbers
(4.6) Y = Q(uk), kew.
(Notice that “Tr“k) = O(uk) V T € R/272). Our next result concerning (4.1) is an
asymptotic property of the sequence Y, as k * +o,

Proposition 4.2. The sequence of critical values of ¢ satisfies the property

lim yk/k2 = 4o
ke

Furthermore, one has 0 < y' < 72 € eae € Yk € ene

Proof of Proposition 4.2. Let vk(t) = uk(t/k). Then vk 1is a 2wperiodic function. It

is easily seen by symmetry properties that uk(2'l/k) = 0 and thus vy is a solution of
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% "2 9tvy)

(4.7)
vk(o) - Vk(ZI) -0 .

2% 2 2 2% 2 2% 2%
(Recall that g is odd). One has g & =K g’ v, and J G(uk)-g Glv, ).

Hence

2 2 _1 *° v
(4.8) v = e )/ -;J

(4.7) yields:
4.9) | #=X ] gvav .
(4. X" 24 %’V
Hence, one derives from (4.4), (4.8) and (4.9):

2%

(4.10) Wi (G3-0) [
[}

2
k

2%

We claim that f ': + 4= ag k * +», 1Indeed, suppose by way of contradiction that
0
for a subsequence of indices k, I\’rkl 2 remains bounded. Then, Ivkl 1 and consequently
L H

vkl - remain bounded. Hence, there exists a constant C > 0, indepegdent of k such
L

that |g(v, )| € Clv . By (4.9) this leads to

2% 2% 2%
(4.11) ocf Leaf RcaS[ 2
0 0 k™0
2% o2
which is imposgible for large k. Therefore, [ Ve Tt as k + 4@, and from (4.10) it
0
follows that
(4.12) lim yk/k2 = o,

K+t




Let us now check :hat (Tk}kel' is an increasing sequence. Actually, we are going to

derive a stronger property. Namely, that (Yk/k2 }kel' is an increasing sequence of
positive numbers., For A > 0, let v, be the unique solution of

-ﬁx- Ag(wx), "X> 0 in (O,w ,

(4.13)
Hl(o) - HA(') = 0

It is proved in H. Berestycki (9] that w, exists and is unique. Moreover, owing to the a

A
priori estimate derived in [9] and which can easily be adapted to (4.13), one verifies that
A+ w, isa c' mapping frem (0,+®) into H)((0,7)). (Notice that this a priori

estimate breaks down as A + 0). Let

1 "2 ¥
el =3 [ wi= A [ Glwy .
0 0
Then,
¥ aw T aw *
de(}) » A A
T'I"xd_x'*f"('x’?ﬁ"jc“’x)'
0 0 0
My,
But since o e Ho((o,!)), one obtains from the equation (4.13):
. - d'
. Y A
g"k-dT-A({ g(vx)'ar-o.

Hence, using the fact that G(s) >0 ¥V s #0, one has

de(})
dA

That is, e(A) is decreasing with respect to A. Now, from (4.13) we derive the following

(4.14) <o .

expression of e(A):
'
e(d) = A [ 5 gtwyw, - Glwy} .
0

Whence, by (4.4) we see that e(A) > 0, ¥ A> 0,
Using the same notation as for the proof of the first part of the proposition, we know

that v, is positive on (0,%) (as u, > 0 on (0,%k)) and vk(o) -vk(w) = 0,

Therefore, from (4.7) it follows that Ve is the solution of (4.13) corresponding to

A= 1/k2 i v 2w

« Thus, by (4.8), one has
k k-z
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2% 2%
*2 1 2
ve - G(vk) 2e(t/k") .

(4.15) yk/k2 --'2- s
x2 0

o~,

Hence, by (4.14) we obtain that yk/k2 is an increasing sequence of positive numbers.

This completes the proof of Proposition 4.Z. .

Remark 4.1. 1In the particular case g(s) = lsqus with 1 < g ¢ ®», computations can be

made somewhat more explicit. 1Indeed, it is easy to see in this case that all the u, are

2/(q~1)

deduced from u, by the transformation “k(t) = k u‘(kt). It then follows that the

R A SR T 1
critical values of the functional ¥(u) = 3 f u - e f |u|q+ on & are the
- 2 q-: ° 1 1 2 a+
numbers Yy, = ¥(u ) (k) , kew with Wu) = (- ;—7;-) of lu I¥77 > 0. since the

exponent of k in ?k may be made as close to 2 as one wishes, this example shows the

result of Proposition 4.2 to be optimal. .
In order to use Theorem 2 in the next section, we now require a lower bound on the

maximal dimension of a subspace of &® on which the quadratic form h +—+ <¢"(v)h,h> is

poaitive definite, when v =17 % This is the purpose of the next results.

Proposition 4.3. Por each critical point 'rtuk of ¢, there exists a subspace F of &

(depending on T and k), F having codimension 2k + 1, and there exists €> 0 (€

depending on k) such that

2
<..(Ttuk)h'h> > t:IhIL2 " Vher.

Proof of Proposition 4.3. For a function q € L.(IO,Z!] )}, we let

u1(q) € «se < p.(q) € +e. denote the sequence of eigenvalues of the linear Sturm—

3
Liouville problem:

-W - qw = Im in (0,2m)
(4.16)

w(0) = w(2w) = ¢




By a result of H. Berestycki [9], we know that the solution vy of (4.5) has the property

that
(q'(wj)) <0< uj+1(g'(wj)) .

%
Hence, in particular,

(4.17) (q'(uk)) <0< (g’(uk)) .

Yok 2k+1

Let {.j}jel‘ denote the sequence (depending on k) of normalized eigenfunctions of (4.16)

associated with q = g¢'(uy):

-!j - q'(‘ﬁt)zj - uj(q‘(u.k))zj in (0,2w)

(4.18)
(0) = z (2%) = 0, z2!(0)>0, Mz 0 =1,

3 3 3 31,2

Consider the space - lpan{zj; § 22x + 1}, Then, P is a subspace of H;((O,zl))

Fy
having codimension 2k in H;((O,Zl)). Furthermore, because of (4.17), one obviously has

(4.19) <4™(u Ih,h> > eknuzz ., vhner
L

1
L]
where tk = u2k+1(g (“k)) > 0. For any function w € ao((o,zw)), one has
w(0) = w{(2%) = 0, Hence, one can identify H;((O,Zl)) to a subspace of n‘(s') =& and
one has
& = H ((0,27) O R .
Therefore, F, is a subspace of & of codimensjion 2k + 1.
Now, for T € R/27S, let F - (Tth' he Pk} - TF Obviously, L is a subsapce

k,T
of & having codimension 2k + 1. An easy calculation shows that F = Fk,t and
€= ck > 0 verify the desired properties in Proposition 4.3.
The proof of Proposition 4.3 is thereby complete. .
A straightforward corollary of Proposition 4.3 is the following:
Corollary 4.1. For any m,k € W, m>k+ 1, and for any T € R/2%Z, there exists a

subspace P of &™ (F depends on m,k and T) such that

dim F > 2m ~ 2k - 1




TR ae——

<tz anb > tklhlzz vher
L

for some ck> 0.

It just suffices to ohserve that if ; is the subspace given by Proposition 4.2, then
F=Fna" satisfies dim? > 2m - 2k - 1. .
Remark 4.2. Define the coindex of a critical point v of ¢ with respect to 28",
coind(v, 0,&‘), as the largest integer 3j such that there exists a subspace K C "
having dimension 3 and such that
<¢™(v)h,> > 0 Vv heHn\lo}.
Then, proposition 4.3 reads:
cotnd(T n ,48™) > 2m - 2k ~ 1, .
All the critical points of ¢ in & are given by the family
{Tt“k’ ken, 1Te R/2¥m}. However, the critical points of the restriction 0‘- of ¢
to the subspace g‘ are different. Nevertheless, using the fact that the critical points
of Ql - "approach® the critical points of ¢ in & when m + ¢+, we will nov derive a
lower bound for the “coindex" of the critical points of 0' -
Proposition 4.4. let k@ N* and let § € R be a number :uch that % < [ Yey® There
exists an integer -o - 10(6) € W such that for any = » LY § is not a critical value

of ¢, . Moreover, for any v € ™ satisfying ¢(v) € § and (Ql .)'(v) =0, mom,
g

[~ o
8
there exists a subspace P C 8" (P depends on v,m,8) and there exists €> 0

(depending only on &) such that
<¢"(vin,h> > tlhlzz ., WVher
L
and

dda P> 2m - 2k -1 .,

Proof of Proposition 4.4. Let us first introduce gome notationss
z‘(o) = {ver $(v) =0, §v) < 8§}

z:(o) = {ve ™ (Oh-)'(v) =0, #v) € 8} .
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For a set A CE and areal a> 0, we denote:
N (A) = {v e E; distance (v,A) < a} .
The proof is divided into five steps.
Step 1. 26(0) is a compact set in &. This is a consequence of the Palais-Smale
condition (P.S) satisfied by ¢ on 8.

[
Step 2. Let (v,) CE be a sequence defined for m 2>m, such that va e z_( #. Then

1

(v.) has a convergent subsequence which converges towards a point in z‘( #. (This is but

a particular case of the proof given for Proposition 3.2 above).

Step 3. For any a> 0, there exists m = n1(6,a) € N such that ¥V m > LI

z:( ¢$) C NG(ZG( ¢)). This fact is obtained arguing indirectly and using Step 2.

one has

Step 4. For any € > 0, there exists n > 0 such that for any v eN (z‘( $), one has
Step 8. 1 n

for some u € 26(0)3

(4.20) 1<$"(v)h,h> = <¢"(u)h,h>| < e1m|2

. vhed,.
12

This just follows from the c? character of the functional ¢ on & and from the fact

that 26(0) is compact.

Step 5. Conclusion: By proposition 4.3, there exists € > 0, and for any u @ z‘( L]

there exists a subspace F, of & (P, depending on u, §) such that Fu has

u
codimension 2k + 1 and
2

LZ

(4.21) <¢"(u)h,h> > elhl vhe F“ .

Let €, = €/2 >0 and let n > 0 be defined by Step 4. Lastly, let L m‘(6, n) be

given by Step 3 (m; only depends on 8). Then, for any m > L and any v e z:( .,

there exists u € 26(0) such that (4.20) is verified. Whence it follows from (4.20) and

(4.21) that

@ vmm >Emi’, vher ng"=F.
2 2 u
L
Since dim F > 2m ~ 2k - 1, the proof of Proposition 4.4 is complete. [
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To conclude this section, we consider now a functional & definedon E = gV by

N 1 2 2 2%
o(x) = ): Q(xi) =3 l | %™ - ] wix)
i1 0 0

N

for any x = (x,,...,x“) : R+ RN. x € E, and vhere W(x) = Z G(xi). We denote here
i=1

again

26(0) = {xeE; (x) =0, &x) < §}

and

z:(O) = {x e £ (Ol Q) (x) =0, &x) < 8} .
B

From the above propositions, we obtain the following result for ¢.
Proposition 4.5. The critical valuesa of ¢ on E are the numbers

‘k k“ - Yk + Yk LYY 4 Yk“ for any combination of integers k1,...,kN € W, wvhere
1 XX 1
vk is the kP critical value of ¢ on & (see (4.6)). Let 6 €@ R be a regular value

of &. Define the integer L(§) to be the largest sum k,  + ... + ky among the N-uples

1

k1,...,k- € N which satisfy &1'"”*“ < 8. Then, there exists m, = mo(G) € H such

that ¥V a > lo, § is not a critical value of the restriction Ol o’ Moreover, for any
E

x e z:u) with m > LY there exists a subspace F of E® (F depending on x, m and

8) such that
<®"(x)h,h> > 0 v he r\0}
and

dim F > 2Nm - 2L(6) -~ N .

Proof of Proposition 4.5. Por any x = (x1,...,xN) €E and h = (h1,....hN) e E, one has

N
(4.22) ®(x)h= § ¢(x,)h
1M
i=1
N
(4.23) <O"(x)h,h> = ] <¢"(x, )dh h> .
- f Rl R
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Hence, #'(x) = 0 is equivalent to 0'(:1) =0, Vi=1,.,.,N¢ Thus, the critical values
of ¢ are the numbers ak UL W RTD + Yk“' Let (01,---,0N] denote the

1 N 1
canonical basis of l“. Since E = &n.1 @ .. © &‘eu, it is also easily verified that

(4.24) o Jix) =0e= (¢ JUx,) =0, ¥i=1,.00,N.
O =)

Let x € E be a critical point of ¢. Then, we know that x = (T‘r"“k‘"""r&“k")

for some 'l",...,tu e R/2%% and k,,...,kﬂ e M. By proposition 4.3, we know that there

exist N subspaces of &, !‘,...,P with ?j having codimension 2k 6 + 1 in &, and

N’ 3
there exists € > 0 such that

. 2
{4.25) < (thukj)hj,hj> >¢ |hj|1:‘2 » Vhoer .

Moreover, an inspection of the proof of Proposition 4.3 shows at once that € can be
chosen independently of kj provided each kj is bounded from above by some k € M; €

then only depends on k. Let us assume henceforth that q‘ X < & Then, for each
qgeeceeky

kj one has k 3 € L(8); and therefore, € can be chosen to only depend on §. Let

Fa P'Q' Q s @ 'N.'

and F depends on x and §. By (4.23) and (4.25), one has

1 P 1is a subspace of E having codimension 2(k1 + aes *+ k“) + N,

(4.26) <" (x)h,h> > cmzz, vher.
L

Now, to conclude the proof of Proposition 4.5 it just suffices to repeat the steps 1
to S in the proof of Proposition 4.4. PFirstly, it is straightforward to check that ¢
satisfies the Palais-Smale condition (P.S) in E. Therefore, z6( #) is compact and one

shows that Im = lo(é) € W such that for m > m,, § is not a critical value of ¢ nt

0
E
Using the facts that 26(0) is compact and & 1is of class c2 on E, one proves that

there exists n > 0 such that for any y € Nn(ZG( 9)) one can find x e zs( 9) such that
(4.27) [<o"(y)h,b> = <O"(x)h,0>| €3 mi’,, vher.
. L

Lastly, following the same type of argument as the one used for Proposition 3.2 one shows

that it 10(6) € W is large enough, then one has
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[ [
(4.28) z-(.) C l“(z (.))' LA I -o .
The proof of Proposition 4.5 is completed by combining the inequalities (4.26) and

(4.27). These show that for any n > L and for any y € z:( ®) theres exists a subspace

? of E® such that
<¥"(y)h,h» > 0 vher{}

and
dur>m-2(k1+...+k“)-n>2\--2x.(6)-u. -

5. AN ESTIMATE FROM BELOW ON GROWTH OF THE CRITI VALURS
The results of the preceding sections will enable us to derive here a sharp estimate

from belov on the growth of the critical values of 1* constructed in Section 3. The main

result of this section is the following.

Theorem 5. Suppose V € c’(l‘,l) satisfies condition (V). Let c: be the critical

values of x'h. defined by (3.1) and let ¢, = lim c:, (0 €c ¢ ®. There exists a
ase
subseguence S (k1 + 4% as i + +®) guch that
1
lim ck /k: - +0,

kl“. i

In the proof of this Theorem, we require the following technical lesma.

Lemma 5.1, Let v e co(l“.l) be an arbitrarily given function. There exists a function

ce cz(l,l) having the following properties

{(5.1) G' = g is odd
(5.2) G(0) = g(0) = g*{0) = O
(S5.3) g is increasing and convex on [0,+®)
(5.4) ocate) ¢igare, vsem s*o.
N
(5.5) vix) < 121 Glx) +C ¥ x= (Xeee,x) € R

vhere C is a constant.
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Proof of lLemma S5.1. Set

m o= max Vix) .
{x[<n

Choose a gsequence of positive numbers 'o"i"""n’ such that a,? 0 vnewmw and

0 1 2
b
a, »m .
1=1 i n+1
Define for r e R, r » 0:
+o
+
g (r) =3 § altr~n+nh?
1 n
n=1
where c' stands for max(c,0). Observe that g, is a finite sum for any r € R

Clearly, 9, € c’(l+.n) and
4
G‘(r) = f 91(l)dl
0
verifies G,(O) - 91(0) - g;(O) = 0. Moreover, g, 1is increasing and strictly convex on

[0,4*) and one has

" +3 ' +2_ 1
G (r) = J aftr=n+1)1 < I altren+ 1) 1*r ez g ()r, ¥ro0.
1 n n 3"
n=1{ n=1
Lastly, one has
(5.6) a, + G1(n) > a, + a, +oaes 4 a b4 L

Now define for r » 0:
g(r) = N 91(/§ r)
r
Glx) = [ gls)as = G, (M =) .
0
For r @R, r <0, set g(-r) = -g(r) and G(r) = G(-r). It is obvious to check that

G satisfies properties (5.1)~(5.4). Let x € ly and let n e N be such that

n€ |x| €<n+ 1, Hence, V(x) € LI and there exists j € {1,...,N} such that
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N Ile » n. Therefore, since G » 0 and G is increasing on R , we obtain:

N
a + Z G(xi)>a + G(x

X 0 j)-.ovs‘(& |xj|) >a; +G,(n) .

0

Hence, using (5.6), we derive:

N
+ 1 oGx) ¥ v x=(x,..x) e,
i=1

2

that is, property (5.5). This concludes the proof of Lemma 5.1.

Proof of Theorem 5. We use here the notations of Sections 3 and 4. Let G be the

function given by lemma 5.1. Define

1 2% 2 2%
0(v)--2-f v~ [ & vvedsd
(] 0
and
N 1 2% ., 2%
x) = § Mx) =2 [ IxI1T- [ wx),
im1 0 0

N
for x = (x,,...,x“) € E, where W(x) = J G(xi)' For m,k @ W', m >k + 1, define
i=1

b: = gup min ¢(x)
AGA: x€A
and

—_— m
b =1lim b , vkew.
k ln'H--k

Since ¢ - 2“0 € I* (by (5.5)), one has

(5.7) b:-z'no‘c', Vmkew, m>k+1

and

(5.8) bk-zno<c, vVken .

Thus, to establish Theorem 5, it suffices to show that there exists a subsequence bk
i

of (b) ‘ki * +® ag i » +m) guch that

(5.9) lm b /K2 = se,

kiﬁ- i
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The functional @ 1is a particular case of the class of functionals studied in Section

3. Indeed, Wecz(lu.l) and W verifies condition (V) (with 6-%). Hence, all tha-

results of Section 3 apply to ¢, and we know that

(5.10) lim b = +=»
k+w
(5.11) bk ‘bkﬂ vkew
(5.12) bk is a critical value of ¢ vkew .,

(Notice that 0 is a critical value of & since #(0) = 0), We also recall that Theorem

: replaced by ¢ and b:

By (5.12) and Proposition 4.5, we know that for any k € M, there exist N integers

3 applies here with I* and c respectively.

j1ou-.ju € N such that

b =8 =y + ¥
X T dgeeenddy T By 4,

where the Yj’ j € %, are defined in (4.6). By (5.10) and (5.11), there exists a

subsequence bk of (bk), with ki ++® ag i + +®, guch that
i

(5.13) b <b ,

ki 1 k1

We claim that (5.13) implies (5.9). This fact rests on the following lemma.

view.

Lemma 5.2. For any k € N, k » 2 such that bk-1 < bk' there exists jt""’jN en
+ e b4 cee .
with j1 +jN+N k, and yj1+ +yj <bk
N
Proof of Lemma 5.2, We argue by contradiction and suppose that for any Bj j < bk'
greeedy

one has j1 + eee + jN < k - N. There exists § & R, bk-1 < 8§« bk such that [6,bk)

does not contain any critical value of ¢. As in Proposition 4.5, define L(&8) to be the
largest sum j1 + o0 + jN among the N-uples of integers j1 ""'jN e B subject to the
constraint 8 < 8. Then, one has

11'000'1“
(5.14) 2L(8) + N ¢ 2k ~ N < 2k .
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By Proposition 4.5, we know that there exists m, =« no(G) e W' guch that § 4is not a

critical value of ¢ for any m > m.. PFurthermore, for any = 2 = and for any

n ' 0
xe z:(n = (x e 2™ (Oh.)'(x) = 0, #(x) € 8), there exists a subspace F, of E*
(r, depends on x,m and §) such that
(5.15) dim F > 2¥m - 2I(8) - N
: and
i (5.16) (), >0 vher \0o},

Lastly, from the proof of Proposition 4.5 it is straightforward to derive that z:( 9 is

[ compact.

Hence, we are now in a position to apply Theorem 2 of Section 2 to obtain, using

(5015)!
(5.17) Il([ﬂ:,p) =0, View, £t<(28m-2L(8 -W) -1, Vpe [01'; .
By (5.14) we have 2¥m - 2k = 1 ¢ (2¥m - 2L(§) = R) - 1. Therefore, {5.17) yields:

(5.18) ((05p) =0, vmom, vpe m'; .

¥ e 2k-1
On the other hand, there exists an m @€ W* large enough, with m > -0' and such that

. L} m
L (5.19) SN TR

Then, by Theorem 3 of Section 3, the inequalities (5.19) imply:

n
(5.20) " 2k-1(“l P *o
for some p e (41

The contradiction between (5.18) and (5.20) completes the proof of Lemma 5.2. L

Conclusion of the proof of Theorem 5. A consequence of Lemma 5.2 is that for any

[ k€W, k>28, suchthat b_, <b , there exists j € W with 3 > -k and
E Yj < bk. (Indeed, the Yj'l are positive, and if :l1 + e 4 j“ 2k - N, at least one
1
3y verifies ji > o5 K-

Now let (k;) be the subsequence satisfying (5.13) (k1 + +®)., Then, for any k,,
there exists 3 i € B such that

1
(5.21) ij < bki' j1 > 2N ki .

L 2 ks
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Lemma S.3., lLet VvV € c‘(lN,R) satisfy condition (V). Let A > 0, k >0, O

Hence, ji * 4% ag | + 4o, Prom (5.21) we derive
2 1 2
(5.22) b /k, > =—==17y,  /(3,)" .
kb w2 3

Therefore, by Proposition 4.2, we derive from (5.22):

s b /xi - 4o,
k oo %4

The proof of Theorem 5 is thereby complete. .

Remark S.1. If one assumes V to have polynomial growth, that is V(x) € a'lxlq+1 + b

for some a’,b’ > 0 and q > 1, then the above estimate can be somewhat sharpened. As is

clear from the proof above, one can show in this case, using Remark 4.1 that for a

subsequence ck" one has .
=
ckx > u (ki)
where 1 > 0 is some constant. This result will be used in Section 7. L]

Remark S5.2. We conjecture that one actually has 1lim ¢ /k2 = +» for the whole sequence
k>t

The eatimate of Theorem 5 was derived here using some deep topological

k

(c,)

°k’'ken’
properties associated with the numbers Cx+ It would be interesting to know if one can
derive this estimate (or a stronger version) in a purely analytical fashion. Lastly,

another open problem ig to know whether one can achieve a more precise understanding of the

relationship between the integers k € W and j1"""n € W which satisfy

bk = Bj 5. We emphasize the fact that even in the simple case N = t and
geeeeedy

Vix) = 3 1 n |x|q+1 (@ > 1), such a relation or such a stronger estimate for the whole

saequence b, are not yet known. L]

Theotem 5 will be used in the next section through its following corollary.

,,02 >0 be

arbitrarily given positive numbers and let p > 1 be given. There exiat k e M*, k » 2

and a sequence (mj) CW, m =+ +2 ag j > +® guch that k > K and for m = mj the

b}
following hold:
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mem >+ meton k
m m
A< ck_1 <c
and
m m m . 1/(ptt)
- >
%k T %=1 2 %) t 9%

for all indices m = mj.

Proof-of lemma 5.3. Let ¢ = 1lim ¢ , ¥V k € WM*. It clearly suffices to show that there

kT rm X

exista k €W, k » 2 such that k 2 X with

c ? u(k = 1) >A

k~1
and

Vg,

(5.23) S T Sy > a‘(ck)

We claim that (5.23) holds for an infinite sequence of indices k € W*.

(This is enough to

conclude since 1lim u(k) = 4w), We argue by contradiction and suppose that

k4o

1/(p+1)
(5.24) c < c,(ck) + o, ¥ k2 ko

% T k-1

for some k. € N*. Using a slight modification of Lemma S.1 in (3} (or Lemma 7.5 in [6]),

0
it is atraightforward to show that (5.24) implies

(5.25) ¢ € a KP*V/P L g Ly k-cowe

for some constants a > 0, B8 > 0. Since p> 1, (p+ 1)/p < 2 and (5.25) yields

lim ck/kz =0 .
e

But this is impossible as it would contradict the result in Theorem 5.

lemma is thereby complete.
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6. EXISTENCE OF FORCED OSCILLATIONS

Using the results of the previous sections we will now prove Theorem 1. Recall that
I is the functional defined by
2% 2%

1 21.2
x) =g [ IxI°-[ v+ [ fx, xeE
0 0 0

The critical points of I in E are the 2w¥-periodic solutions of the system
(1.1) R+ Viix) = £(t) .
We stai 't by a truncation procedure on the functional I. :

Let X : R * R be a c. function with the following properties: 4

x(s) =1, wsge([0,1],
x(8) =0, ¥eg»>2,
x'(s) €0 , Vnel+.

For p > 1, set ;p(l) = x(s8/p)e Thus, ;p verifies

~ - ~
(6.1) xpec (l#,R’_), 0 < xp <1, x'p <0 on R, .
(6.2) i'p(-) =1 wvse{0,p] and 'ip(s) =0 Wws>2p,
{6.3) I;;,(s)'sl <B W¥sg20

where B > 0 is a constant. Lastly, we set

2%
(6.4) X, = % (J xI®*')  vxer,
0

where p is the exponent appearing in (1.2). (E.g. p + 1 = 1/0 with 6 given by
condition (V) is admissible in (1.2)).
For p » 1, we define
1 2n 2 2% 2%
I(x) =< [ Ix[~ [ vix)+ x (x) [ £x.
e 2y 0 S

Thus, if lxlp;l' < p, one has Ip =1 4in an Lpﬂ-neighborhood of x in E, while if

lxlp; > 2p, then 1= 1* in an LP*' neighbochood of x  in E.

We require the next three technical lemmas.

1/(P+”' Vx@E, where pu> 0 is a constant.

Lemma 6.1. |I%(x) - Ip(x)l <Cup




oL B fa o duish gt 2t oand

Proof of Lemma 6.1. One has

j1*(x) - Ip(x)l <c xp(x) lxin”

The lemma follows from the fact that xp(x) =0 as soon as Ixl pH > (Zp)'/‘w". [

L
lemma 6.2, For any p 21, I o satisfiea the Palais-Smale condition:

3

(P.8) For any sequence (x.)C E such that Ip(xj) is bounded from above and
(1 p).“‘j) + 0 strongly in E', then (xj) is relatively compact in E.

Furthermore, satisfies the analogous property in E® for all m e W*. Lastly,

IOh-
Ip verifies the condition.
For any sequence (x_ )c B such that x_ @ 2, a )'(x ) = 0 and such that
L) n p'!n n
(P.S)* Ip(x-) is bounded from above, there exists a convergent subsequence from (xy)

which converges to a critical point of Ip.

The proof of lLemma 6.2 is essentially classical. It uses property (6.3) and it relies on

arguments that have already been called previously in thia paper. 1t is also

straightforward to adapt the Appendix in {6] to the present framework to derive this

lemma. Lastly, one could also adapt the estimates in the proof of the next lemma in order

to obtain Lemma 6.2. We therefore omit the details here.

Lemma 6.3. There exist two constants a> 0 and B> 0 such that for any p » 1 one has

the following property. If x € B verifies (Ip)'(x) =0 and Ip(x) € ap=- B then
'“pﬂ € p - 1 and congequently, Ip = I in a neighborhood of x in E.

I.p"‘1

Proof of Lemma 6.3. (Ip)'(x) = 0 reads

2%
6.5) R+V(x) = x(x) £+ xUx) [ tex,
(- P 0

where

- 1 1
' - 1 * (& 'p+ P .
xp(x) (p+1) xp( x I‘p") Ixt™ 'x

=)0

i
'
s
i
H




X1, = (p + 1) 'i'p(lxl";:,) lep;:‘
L L

Therefore, by (6.3) one has
(6.6) |<x;(x),x>| < B, = (p+1)B.
Multiplying (6.5) by x and integrating yields:

2% 2v

(6.7) 1 %1% - [ vioex| <cixi
0

I
0 Lp*‘

where we have used (6.6), (6.1) and wvhere C > 0 denotes a constant - as it continues to

do generically in the sequel.
Now, in addition to (6.5) suppose that one has

(6.8) Ip(x) <a

for some A > 0. Then, using (6.7), (6.8) and condition (V) one derives

2%

(6.9) J V(X) SCA +C + cmx.pH

Using (1.2), one obtains from (6.9) that
ri 4
(6.10) [ 1xP' <cansc .
0

Let us choose a,8> 0 in such a way that Ca €1 and =CB + C'

C' are the positive constants displayed in (6.10)., We have thus shown that (Ip)'(x) =0

€ ~1,

where C and

and Ip(x) < ap - B together imply the estimate lxlp;l‘ € p~- 1. Notice that a and 8
L

do not depend on p.

We also require the next corollary:

Lemma 6.4, let a and B be the constants of Lemma 6.3. For any p > 1,

mo(p) e W* such that for any m ? uo(p) one has the following property: If x € e

verifies (I

in £®.
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there exists




This follows easily from Leamas 6.3 and 6.4. -

To prove Theorem 1, we will now show that I has a sequence of critical values which
is unbounded from above. We argue by contradiction and suppose that the critical values
of I are bounded from above. That is, we make the following assumption.

There exists A C R such that I
(6.11)

has no critical values in [(A,+®),
Then, by Lemma 6.2 (condition (P.S)), the set of critical points of I, 2z(I) |is
compact. Por any functional F € c‘(!,l), we continue to denote

z‘(r) = {x @B F'(x) = 0, F(x) < §}

[
Z(F) = {xeB; (P, )'(x) =0, P(x) < 8} .
- e

Prom (6.11) and Lemmas 6.2 and 6.4 we know that by choosing Io(p) large enough one has
ap-8
(6.12) z, (Ip) C un(zu)), Vp>1, Vva> -o(p)
where, as usual, lln(z(l)) = {x e E; distance (x,Z(I)) < n} and wvhere n> 0 is some
fixed positive number (e.g. nh = 1). Since E S I.., we derive from (6.12) that
3 C>0 such that Ixl _ <C for any

L
(6.13)

xe g% 8
|}

(Ip) and for any m >no(p), vypr 1.

In (6.13), C is independent of p and m, Since Vv e cz(l",l), one obtains
(6.14) wrnr _<c, vxez® 81y, vor1, vaosm (.
L m [ 0
The estimate (6.14) yields a lower bound on the coindex of the critical points of
Ip. Indeed, let jo €N be a fixed integer such that j: > C (C 4is the constant in
(6.14). One has
2% 2%

attxh,> = [ w12 - [ vioohe .
0 0

g~
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Hence, for any h € E N (B )7\{0} and for any x @ B satisfying WN"(x)) _ <C, one
L
has
2 ¥ 5
(6.15) <a*(xin > [, + N2 -c) [ n¥> 0.
0

By Lemma 6.4, we know that if x @ z:"'sup) and m >mi(p), then I_ =1 ina
neighborhood of x. Therefore,
(6.16) <I5(x)h,m> = <I*(x)h,k>  Vhe .
We sum up (6.14) - (6.16) in the following relation:
3
casonm >0, vhes n (e %o},

(6.17)
Vxez:(tp), vya >l°(p), vée [A,ap -~ B}

(Indeed, obaerve that by (6.11) and Lemmas 6.2 - 6.4, one has

z:"'s(ro) - z:(rp) - z:(zp) c z:(z) for any 8e [A,ap- B and any m >m (p)).

We can now apply Theorem 2 (see Section 2). Let Py be defined by ag, - 8= A. By
assumption (6.11) and Lesmas 6.2-6.3 we know that if o > p,, [A,ap - B] does not contain
any critical value of Ip or of 1I n provided m > lo(p). The relation (6.17) shows

) °ls

that for any x € z:p- (Ip) there exists a 2N(m - jo)-diuensional subspace of E® on

which Ip" is positive definite. By Theorem 2 this implies:
n
'n.‘“p]s’ =0, viemw, £ <22(m~- jo) -2
(6.18)
Yo Po* Vn >n°(p), vée [aap-~ B .

We will now show that (6.18) to which (6.11) led is untenable. Pirstly, in view of

Lemma 6.1 notice that one has

m m m
(6.19) ™ 5> (1™ > (14
by ek by
as soon as
(6.20) b, >b + u/ PV ana b >p, ¢ ug'/FHY)

(wvhere u > 0 is the constant given by Lemma 6.1). By Lemma 5.3, there exist k € W* and
a sequence (-j, cw, -j + 4o guch that for all m = my the following hold:
(6.21) k> lljo + 1,

LY v 23

————




(6.22) m = 1lm *=c .

b Shod e k
(6.23) BA Scp <ol
n_ = m, 1/(p+1)
(6.24) €k = -y 2 Gylc) + 0,

for all m = ‘j' where 01.02 > 0 are arbitrarily fixed positive numbers.

We precisely choose G‘,dz in such a way that one has

VT S e S L P

for any a > 0, whers q,8 are given by Lemma 6.3 and u > 0 is the constant in Lesma

6.1. 1Inequality (6.24) then leads to

+8
% A A LI

(6.25) S " €y ¥ 2M (-——';—'
Sy + 8 w1
let p = raR) We now fix LI large enough so that -)no(p). ck--2-<ck and
m_ = 1/ (p+1)
(6.26) S Cret > 2up + 1.,
Set
- 1 1/(p+1)
(6.27) 8 Sy Pt WP
Then, by (6.26) one obtains
(6.28) c: -% > 8+ up‘”ru .

By Lewma 6.1 (compare with (6.19)-(6.20)) we have:

1 1
(6.29) fre >, +3I" > x, > 8% > f1* > - 3

whence, by Theorem 4 (Section 3) one derivea from (6.29) that

(6.30) tr, > 8% e to

¥ 2= 2k 1
for some point w € [ID): - llp > 6]". Observe now that

" 1 L] 1
Atck_‘+2<6<ck 2<ck-¢p-8

BT % T3
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and that m > lo(p). We have thus reached in (6.30) a contradiction to (6.18) for by
(6.21) one knows that
2lll-2k-1<ml(l-jo)-3.
Thus, the assumption (6.11) is absurd and the proof of Theorem 1 is thereby complete.
Remark 6.1. In the preceding argqument the assumption that V was c2 played a crucial
role in obtaining the bound (6.14), which allowed us to invoke Theorem 2. We would like to

emphasize that a simpler argument allows one to prove the existence of at least one forced

vibration of (1.1) (for any given periodic £) under the assumption that V € t:1 (I“,l).
Indeed, the above proof shows that (6.29), whence (6.30), hold for at least one k € ¥ and
for an infinite sequence of m = m 5 + 4@, Now suppose that (1.1) has no solutions at

all. Then, I olm has no critical values in (-=,§) for a fixed m = ny large enough.
B

By Lemma 2.1 then, the set . (x pl: is a deformation retract of the whole space E™. This
implies l‘([lp]:) =0, VLenN which is a contradiction to (6.30).

Remark 6.2, It is easy to check that the contradiction of assumption (6.11) actually gives
the following slightly stronger result: There exists a sequence (xk)m of 2w-periodic
solutions of (1.1) such that lim l:&l - ™ *® Note that lxkln. is the amplitude of a

k+4o L
2%-periodic solution. .

7. MORE GENERAL FORCED SYSTEMS

In this section, we consider the more general non-autonomous system
(1.3) %+ VLX) ~ 0,
Here again, we are interested in the existence of T-periodic solutions x(t) e IN for
(1.3). We assume that ; satisfies

(7.1) ve Cz(l x l“,l) and V(t,x) 4is T-periodic in ¢t .

0 <V(e,x) €OVt x)ex VxeR, Ix| >R
(7.2)

where 6 € (0,1/2) .

(7.1)=(7.2) imply the existence of positive constants Y,8§ > 0 such that

Ry Y Es
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(7.3) yixi®*' - s cvit, )  vitx) em xg,

where p+ 1 = 1/6> 2., Thus V is superquadratic in x. (M
The results and methods of the previous sections allow us to show the following result

for (1.3).

Theorem 6. Let V € cz(l x i“,l) verify (7.1) and (7.2). Suppose that there exists a

function Vv € Cz(l“,l) satisfying condition (V) and such that
(7.4) Vit x) - Vix)] cc+clx|® veem vxen,
+
where C > 0 is a constant and a > 0. If a is such that a < L2—1 - -;—6 , then,

problem (1.3) possesses infinitely many T-periodic solutions.

Remark 7.1, p + 1 is the exponent appearing in the relation (1.2) satisfied by V. Note

that from (V) one can choose p + 1 = 1/6. The number 0 e (0,1/2) is the same in

(V) and in (7.2). []

Remark 7.2. (1.1) is a particular case of system (1.3) corresponding to

;(t,x) = y(x) -~ f(t)ex. B8ince a= 1 is always admissible in Theorem 6, one sees that
(for f € L.) Theorem 6 is an extension of Theorem 1. -
Sketch of the proof of Theorem 6. Since the proof follows exactly the same ideas as the
one we have developed above for Theorem 1, we just mention here the general outline and
some estimates.

A8 before, we fix T = 2% and observe that the 2w¥-periodic solutions of (1.3) are the
critical points in E of the functional

1 2% | 2 2%,
J(x) --Z-I Ix}* - [ vie,x) .
0 0

(")rhe existence of subharmonics (that is kT periodic solutions of (1.3) with k € W*)
has been studied by P. H. Rabinowitz [21] for certain classes of Hamiltonian systems,
d{.ffcrcnt from the ones considered here. (For instance, in the case of (1.2) where
\Z(t,x) = V(x) = £(t)*x, the hypotheses in {21] would imply £ = 0). For a subguadratic
V, the existence of subharmonics in (1.3) has also been proved by F. Clarke and I.
Ekeland [27]).
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1 2% .2 2%, 2%
3, (x) = 3({ (xI% = x,(x) ({ vit,x) = (1 = x(x)) ‘{ vix) ,

where, as in Section 6, xp(x) stands for

",

- 2%
Xy(x) = xp(({ Ix

and Xy Xy verify (6.1)-(6.4).

The proof of Theorem 6 rests on the following estimates which parallel Lemmas 6.1-6.4.

Lemwa 7.1. Under assumption (7.4), for a < p+ 1, one has Iap(x) - I*(x)| < ¥ pq/(pﬂ)'

¥VxXEeE, Vp>1, where u > 0 is a constant.

Lesma 7.2. J_ and J verify the Palais-Smale condition in E and E®

[ olx-
respectively. Moreover, Jp satisfies the condition (P.S)*.

Lemma 7.3. There exist two constants a,B8 > 0 such that for any p > 1 one has the
following property. If x @ B verifies (Jp)'(x) =0 and Jp(x) < ap - B, then

lxll’:’l1 € p - 1 and consequently, Jp = J in a neighborhood of x in E. Furthermore,
L

Lesma 6.4 holds with I and Ip replaced by J and Jp respectively.

The proofs of these lemmas follow very closely a priori estimates already derived in
this paper (see in particular Lemmas 6.1-6.4). We therefore do not repeat them here. =&
From Lesma 7.1 it follows that

[ ] m m
[I'ld ) [Jp]a o lI'ld '

a/(p+1) a/(ptt)

provided a > d + up and &' > 1+ up Let c, be the critical values

of 1* defined by (3.1). Using the same method of proof as in Section 6, one can find a

1 1
number a such that c:k_1 + 2 < 'k < ck 3 and

1
gt a5 10 ey - I

k=1
for infinitely many indices =, if one has

(7.5) [x* > ¢

(7.6) ¢ - ¢ wiptt) , 5,

k" ket 2300

-~46=




Now, in view of lLemma 7.2, one furthermore requires that 0, k be chosen in such a way
that

(7.7) % <Cap~- B,

thereby insuring that a < ap - B. The inequalities (7.6) and (7.7) are compatible (that

is, one can find a p » 1 satisfying both) provided -1 and ¢ verify

wipH) o
2

{7.8) c x

x ~ k-1 > %S
for some appropriate constants a,,oz > 0.
Thus, for any k € W* such that (7.8) holds, there exists p > 1 and a < ap- B
for which the inclusions (7.5) are valid for infinitely many indices wmw. By Theorem 4,
this implies
n
We have seen in the preceding section that by Theorem 1, one derives from the fact that

{7.9) holds for infinitely many indices k that J pc a seq of critical

values which is unbounded from above. (This is obtained via an argqument by contradiction).

Therefore, to prove Theorem 6, it suffices to show that (7.8) holds for infinitely
many indices k. By way of contradiction suppose that
(7.10) S " G € Oy o PV 4 g
for any k » ko. Then, by Lemma 5.1 in (3] on Lemma 7.5 in (6], there exists a constant
M > 0 such that

P .
(7.11) ckﬂak"”'“, vk >1.
By Theorem 5 (Section 5) there exists a sequence (k 1) cCw, k i + 4+e guch that

(7.12) la ¢ /xf - 4w,
K ot Fi

Thus, one readily sees that (7.10) is impossible if (p + 1)[p + 1 ~ d-1 € 2, that is if

a < L;—-‘-. Hence, in this case, (7.8) holds for infinitely many indices Xk and the proof
of Theorem 6 is complete. .
As we have seen in Section 5, estimates on the growth of ¢, sharper than (7.11) can

be achieved under additional assumptions on V. More precisely, suppose V verifies

EY b 2%




[,

(7.13) alxIP*' - bcvim ca' x4+, wvxed,
with a,b,a’',b' > 0 being constants and 1 < p € q < ®», Then, we know (compare Remark
5.1) that there exists a sequence (ki) cu, k 1 + 4o and a constant v > 0 such that

2 1

(1.14) ¢, »vk, T
k, 1

In this situation, (7.11) (which comes from contradicting (7.8)) is impossible provided

(7.15)

(p + 1)(q + 3)
that is, a < z(q + 1) .

We thus have shown:

Theorem 7. Let V and V verify the assumptions of Theorem 6. Suppose moreover that

V satisfies (7.13). Then, the conclusion of Theorem 6 holds with & ¢ %ﬂﬁﬁ.

particular, if p=q in (7.13), then the conclusion holds with a < 1’—;——3

Remark 7.3. The preceding results lead quite naturally to an open problem: It is tempting

to conjecture that (1.3) possesses infinitely many T-periodic solutions provided V only

satisfies (7.1) and (7.2).
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